Convergence of singular perturbations in singular linear systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular constrained linear systems

In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...

متن کامل

Almost Global Convergence in Singular Perturbations of Strongly Monotone Systems

This paper deals with global convergence to equilibria, and in particular Hirsch’s generic convergence theorem for strongly monotone systems, for singular perturbations of monotone systems.

متن کامل

Convergence of product integration method applied for numerical solution of linear weakly singular Volterra systems

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

متن کامل

singular constrained linear systems

in the linear system ax = b the points x are sometimes constrained to lie in a given subspace s of column space of a. drazin inverse for any singular or nonsingular matrix, exist and is unique. in this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of drazin inverse in solving such systems is investigated. constrained linear system arise ...

متن کامل

Singular Perturbations in a Non-linear Viscoelasticity

A non-linear equation in viscoelasticity of the form ρuρtt(t, x) = φ(u ρ x(t, x))x + ∫ t −∞ F (t− s)φ(ux(s, x))xds+ ρg(t, x) + f(x), t ≥ 0, x ∈ [0, 1], (0.1) u(t, 0) = u(t, 1) = 0, t ≥ 0, (0.2) u(s, x) = v(s, x), s ≤ 0, x ∈ [0, 1], (0.3) (where φ is non-linear) is studied when the density ρ of the material goes to zero. It will be shown that when ρ ↓ 0, solutions u of the dynamical system (0.1)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1997

ISSN: 0024-3795

DOI: 10.1016/0024-3795(95)00556-0